
A Review of World’s Fastest Connected Component
Labeling Algorithms: Speed and Energy Estimation

Laurent Cabaret Lionel Lacassagne Louiza Oudni
Laboratoire de Recherche en Informatique

Univ Paris Sud, F-91405 Orsay, France
email: firstname.name@lri.fr

Abstract—Optimizing connected component labeling is cur-
rently a very active research field. The current most effective
algorithms although close in their design are based on different
memory/computation trade-offs. This paper presents a review
of these algorithms and a detailed benchmark on several Intel
and ARM embedded processors that allows to focus on their
advantages and drawbacks and to highlight how processor
architecture impact them.

INTRODUCTION

Binary Connected Component Labeling (CCL) algorithms
deal with graph coloring and transitive closure computation.
CCL algorithms play a central part in machine vision, because
it is often a mandatory step between low-level image process-
ing (filtering) and high-level image processing (recognition,
decision). As such, CCL algorithms have numerous applica-
tions and derivate algorithms like: convex hull computation,
hysteresis filtering, geodesic reconstruction.

Designing a new algorithm is challenging both from con-
sidering the overwhelming literature and the performance of
best existing algorithms. Goals might be a faster algorithm on
some class of computer architecture or minimizing the number
of over-created labels or the smallest theoretical complexity.
Yet another issue is to be most predictable.

Now, from the current state of the computing technology,
reaching decent performances in actuality requires for CCL
algorithms to take into account two specificities/capacities
of current General Purpose Processors (GPP): the processor
pipeline and its cache memories. That amounts to minimize
conditional statements (like tests and comparisons) to reduce
the number of pipeline stalls and limit random sparse (typically
vertical) memory accesses, to lower cache misses.

The embedded processing applications ask continuously to
process bigger images in a smaller time and to consume as
little energy as possible. That is why we focused on mobile
processors in this study.

As it is an intermediate level algorithm, CCL processes
the output data coming from low level algorithms (binary
segmentation, ...) and provides abstract input data to other
intermediate or high level algorithms. Usually, such abstract
data also called features are the boundary of bounding rectan-
gle (for target tracking) and the first order statistical moments
(surface, centroid, orientation, ...). So, if a standalone CCL
algorithm can be considered at first step, the couple “CCL +

features computation” is the procedure to be actually evaluated
at end.

Our contribution consists of three elements:
• an enhanced benchmark that incorporates random images

with different granularities. That can be seen as a bridge
between classical random images of density and data base
images,

• a performance benchmark with all state-of-the-art algo-
rithms on embedded general purpose processors from
Intel and ARM,

• an analysis from the energy point of view.
In the remainder of this paper we shall describe mod-

ern algorithms and describe the benchmark’s procedure and
hardware. We then present the results on Intel’s and ARM’s
architectures and finally provide a comparison from the energy
point of view.

I. CONNECTED COMPONENT LABELING ALGORITHMS

Historical algorithms were designed by pioneers like Rosen-
feld [14], Haralick [4], and Lumia [10] who designed pixel-
based algorithms, and Ronse [13] for run-based algorithm.
Modern algorithms derive from the historical ones and try
improvements by replacing some components by a more
efficient one. An extensive bibliography can be found in [5]
and [16].

Except Contour Tracing algorithm [1] that is aesthetic but
inefficient, all modern algorithms are two-passes (or less)
algorithms, none is a data dependent multi-pass algorithm.
They share the same three steps:

• first labeling that assigns a temporary/provisional label to
each pixel and builds labels equivalence,

• label equivalences solving that is to compute the transitive
closure of the graph associated to the label equivalence
table,

• second labeling to replace temporary label by the final
label (usually the smallest one of the component).

They differ on three points: the mask topology, the number
of tests for a given mask to find out the label, and the
equivalence management algorithm.

Using Rosenfeld mask (fig. 1), only two basic patterns trig-
ger label creation (fig. 2), whatever is the connectivity (here 8-
connectivity). The first one is the stair. It is responsible for the
unnecessary provisional label created by pixel-based algorithm

a b c d e f
g h i j k l
m n o p
q r s t

e1 e2 e3
e4 ex

e1 e2
e4 ex

e1 e2 e3
e4 ex
e5 ey

Fig. 1. Masks: first line: Rosenfeld, RCM , HCS2, and Grana, second
line: HCS and LSL

like Rosenfeld’s one. The second one is the concavity. With
the neighborhood CCL locality, it is obvious that the label
creation cannot be avoided.

As figure 4 and figure 5 show, the execution time is not
directly correlated to the total amount of final labels, but to
the number of stairs and concavities that generate equivalence
building. So, one way to improve CCL algorithms is to widen
the label mask. That leads to block-based algorithms (fig. 1)
like HCS2 [7] and Grana [3] that respectively compute 2
and 4 labels from 6-pixel and 16-pixel neighborhood. One
the opposite way, RCM [8] introduces a mask with only 3
neighbors in order to reduce the amount of tests. Grana’s
mask can detect some concavities and avoid label creation
if these concavities are small enough to entirely fit in the
mask. But the only way to prevent label creation from stair
is to use a run-based algorithm like HCS [6] or Light-Speed
Labeling (LSL) [9] that first detect the pixel adjacency in the
neighborhood before to assign a label to the run. The LSL
uses a tricky line-relative labeling to generate RLC coding to
directly find adjacent runs on the previous line whereas HCS
has to perform a test on every pixel to decide to continue to
propagate a label or to perform an equivalence.

2

1

1

2 1

1

Fig. 2. Minimal 8-connected basic patterns generating temporary labels: stair
(left) and concavity (right)

The second point to enhance algorithm efficiency is to
reduce the number of tests. A decision tree (DT) [16] reduces
the average number of neighbor to test to find out the value
to assign to the current label based on mask topology. For
pixel-based algorithms, it decreases the complexity of the 8-
connectivity to the 4-connectivity one. For block-based algo-
rithm, DT is mandatory. Another way to reduce complexity
is to perform a path-compression (PC) [2]. It is a step added
to the Union-Find algorithm to perform a transitive closure in
climbing up to the root of the equivalence. It has been proven
that PC make the Union-Find complexity to grow with the
inverse of Ackermann function [15].

Finally, the third point to improve is the equivalence man-
agement algorithm. Rosenfeld’s algorithm uses Union-Find al-
gorithm and the associated table to store the equivalences. An
alternative approach with three tables has been proposed by [5]

e4

e1

e3
e2

ex=e4

ex=e1

ex=e2

e4

e1
1

0 1

0 1

1

1

ex=e3

0

0 1

0 0

+1 ex=e3=e4

ex=e3=e1

= label propagation

= = label equivalence

+1 new label

Fig. 3. 8-connected Decision Tree

now referenced as Suzuki equivalence tables. The difference
is that the transitive closure is done at each equivalence rather
than at the end.

The benchmarked algorithms (all 8-connected) are:
• Rosenfeld: original algorithm improved with DT+PC,
• Suzuki: Rosenfeld mask with Suzuki tables management

that we improved with DT,
• RCM : pixel-based algorithm with Suzuki management,
• HCS2: block-based algorithm with Suzuki management,
• Grana: block-based algorithm with 128-stage DT,
• HCS: run-based algorithm with Suzuki management,
• LSL: run-based algorithms with Union-Find manage-

ment with two variants: LSLSTD and LSLRLE .

II. BENCHMARKS

We present here the images and processors used for bench-
marking. We also provide a qualitative analysis of temporary
labels creation.

A. Random images generation and qualitative analysis

Depending on the OS and the compiler the pseudo-random
number generator embedded into the libC can change, so pro-
viding the seed is not enough if one wants to do reproducible
experiments. For that reason, the Mersenne Twister MT19937
[11] has been chosen with seed = 0.

Usually papers evaluate CCL performance first with random
images (varying pixel density from 0% to 100%) for hard-
to-label benchmark and secondly with image data base. But
data base can be biased and then may favor some algorithms.
In order to analyze algorithms behavior depending on some
image properties: size of connected components and size of
the smaller element compared to the algorithm neighborhood
scale, we decided to extend random images by changing the
pixel granularity. Initial random image has a granularity of
1. Then we create g-random images whose block of pixels
have a size of g × g, with g ∈ [1 : 16]. The symmetrical
shape of these blocks ensure an equitable treatment between
the different algorithms. All the random images are 1024 ×
1024 (width × height).

The figure 4 provide the temporary labels distribution for
granularity g ∈ {1, 2, 4} for pixel-based, run-based and
Grana’s algorithms (red, magenta, and blue). The number of
final labels (green), concavities (cyan), and stairs (orange) is
also provided.

First, if we compare run-based and pixel-based label distri-
bution, we can see that run-based curve has always the same

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 la

be
ls

 -
 g

 =
 1

image density (%)

labels-pixel
labels-grana

labels-run
final labels

concavities
stairs

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 la

be
ls

 -
 g

 =
 2

image density (%)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 la

be
ls

 -
 g

 =
 4

image density (%)

Fig. 4. Distribution of labels, concavities and stairs versus density for
granularity g ∈ {1, 2, 4}

behavior (close to the final label curve), contrary to the pixel-
based curve. The reason is that the amount of concavities is
proportionally constant (from one granularity to another one)
to the number of final label. For g ≥ 2, it appears that the
amount of stairs becomes bigger than concavities, and thus
increases the gap between the number of labels of pixel-based
and run-based. That is the reason why run-based algorithms
have a better execution time when g is growing: they avoid
more and more label creation.

Concerning Grana algorithm, it generates quite the same
number of temporary labels for g = 1 than pixel-based ones.
For g = 2 it comes closer to run-based algorithms as its wide
mask avoids many temporary labels. But for g ≥ 4, its wide
mask does not avoid label creation, as 4-pixel wide stair and
concavities are beyond the pixel’s neighborhood.

B. Image data base

The Standard Image Data-Base (SIDBA) has been used
for natural image labeling. Gray-scaled images have been
automatically binarized with Otsu algorithm [12]. For both
random images and natural ones, we provide the cpp (cycle
per pixel) of each algorithm, with features computation. The
features extracted for each component are: the bounding box
([xmin, xmax]× [ymin, ymax]) and the first statistical moments
(S, Sx, and Sy).

C. General Purpose Processors

In order to evaluate the impact of the architecture on
the execution time, we selected two mobile processors from

Intel: PenrynM (U9300, 1.2GHz, 10W), HaswellM (4650U,
1.7GHz, 15W) and two embedded from ARM: CortexA9
(OMAP4460, 1.2GHz, 1.2W) and CortexA15 (Exynos5250,
1.7GHz, 1.7W). HaswellM and CortexA9 were chosen for the
curves and tables, however all the SIDBA results were reported
in figures 9 and 10. Executable codes were generated with Intel
ICC v14.0.1 and gcc-arm 4.6.3.

III. RESULTS AND ANALYSIS
TABLE I

AVERAGE cpp VERSUS GRANULARITY

granularity
g = 1 g = 2 g = 4 g = 8 g = 16

algorithms HaswellM
Rosenfeld 13.15 7.55 4.97 4.28 4.02
Suzuki 12.53 7.26 4.68 3.96 3.68
RCM 13.30 9.15 7.21 6.34 5.90
HCS 13.36 8.52 6.12 5.06 4.56
HCS2 11.22 6.93 5.77 5.30 5.15
Grana 15.00 7.36 5.15 4.08 3.59

LSLSTD 8.70 5.88 4.97 4.63 4.48
LSLRLE 16.42 8.54 4.73 3.14 2.55
algorithms CortexA9

Rosenfeld 42.20 35.82 34.14 33.35 32.46
Suzuki 40.67 34.86 32.86 31.85 31.21
RCM 50.99 40.92 37.63 36.27 35.88
HCS 28.79 22.84 20.74 20.25 20.19
HCS2 40.42 30.24 29.13 29.00 29.02
Grana 32.85 23.18 20.61 19.60 19.46

LSLSTD 32.69 27.11 24.94 23.99 23.58
LSLRLE 35.03 23.03 17.20 14.41 13.75

a) Density behavior: Figure 5 shows us that algorithm
curves - except HCS2 -, are symmetrical about their maxi-
mum value. The abscissas of the maximum values are con-
tained in the [45%; 55%] area depending on the algorithm.
Concavities and stairs (fig. 4), lead to temporary label creation
and labels merging, they also increase the probability of having
more tests to perform in the decision tree (e.g., stair makes to
traverse all the DT graph until the label creation node “+1” -
figure. 3) and doing so, increase cpp.

One can observe that when the number of stairs and
concavities decrease (g comes higher) the density curves tend
to flatten. As described in [6], HCS2 algorithm make no usage
of decision tree and so, it needs to load the neighborhood’s
labels for each pixel to label. Doing so, it is not able to reduce
cpp when density grows above 50%.

b) Granularity influence: Table I and figure 5 describe
the behavior of algorithms faced to images of different gran-
ularities. The main trend is that when g grows cpp drops.
First quickly [×0.49;×0.69] for g ∈ {1, 2}, and then slowly
[×0.30;×0.76] for g ∈ [2:16]. One can notice that LSLRLE is
the most accelerated when granularity grows while LSLSTD

is the most regular. It comes from their construction as
explained in [9]. LSLRLE is inefficient for g = 1 because
of its run length encoding kernel. RCM is efficient but only
for g = 1, this is due to the smaller number of tests it performs
compared to Rosenfeld which is an efficient strategy on
unstructured data.

LSLSTD is first for g ∈ [1:4[, Suzuki is first for g = 4
and LSLRLE is first for g ∈]4:16]. Note that g = 4 is a

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

5

10

15

20

25

C
yc

le
s p

er
 p

ix
el

 -
g=

1
Rosenfeld

Suzuki

RCM

HCS

HCS2

Grana

LSLSTD

LSLRLE

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0
1
2
3
4
5
6
7
8
9

C
yc

le
s p

er
 p

ix
el

 -
g=

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Image granularity

0
2
4
6
8

10
12
14
16
18

C
yc

le
s p

er
 p

ix
el

Fig. 5. HaswellM: cpp over density for granularity g ∈ {1, 4} and average
cpp versus granularity

turning point where LSLRLE , LSLSTD, Suzuki, Grana,
and Rosenfeld are close. Their different trade-offs between
memory management and number of tests are broadly equiva-
lent in performances for this granularity value. For structured
data (higher g values), the algorithm ranking is (first to last):
LSLRLE , Grana, Suzuki, Rosenfeld, LSLSTD, HCS,
HCS2, and RCM .

LSL is still the fastest algorithm on Intel architecture. If the
application field provides unstructured images (g ∈ [1 : 3]),
LSLSTD should be chosen, otherwise LSLRLE .

c) Features computation (FC) influence: When FC is
activated, LSLSTD and LSLRLE outperform all others al-
gorithms (table II and fig. 6). This is mostly due to on-the-fly
FC, which make the last relabeling scan unnecessary [9]. FC is
almost always faster than doing the second labeling, especially
for LSLRLE where run length coding speeds up FC. In facts,
the addition of FC accelerates the LSL algorithm. LSLSTD

is first for g ∈ [1:2] and LSLRLE is first for g ∈]2:16].
For structured data (higher g values), the algorithm ranking
becomes (first to last): LSLRLE , LSLSTD, Grana, Suzuki,
Rosenfeld, HCS, HCS2, and RCM .

FC increases equally the cpp of every other algorithms
depending on g (even if number of pixels is constant as density
is constant). From 4.3 cpp for g = 16 up to 9.0 cpp for g = 1

TABLE II
AVERAGE cpp ACCORDING TO GRANULARITY WITH FC

granularity
g = 1 g = 2 g = 4 g = 8 g = 16

algorithms HaswellM
Rosenfeld 22.07 14.35 10.43 9.04 8.41
Suzuki 21.50 14.05 10.17 8.78 8.13
RCM 22.10 15.77 12.48 10.92 10.15
HCS 22.36 15.30 11.56 9.82 8.96
HCS2 20.22 13.74 11.23 10.05 9.52
Grana 23.98 14.13 10.57 8.80 7.97

LSLSTD 9.55 5.71 4.34 3.75 3.42
LSLRLE 12.73 6.25 3.66 2.59 2.01
algorithms CortexA9

Rosenfeld 65.92 57.18 54.43 53.01 51.67
Suzuki 65.47 56.55 53.20 51.43 50.26
RCM 76.55 62.81 58.47 56.50 55.57
HCS 53.28 44.36 41.01 39.86 39.21
HCS2 64.06 51.66 49.74 48.91 48.29
Grana 57.28 44.28 40.79 39.09 38.25

LSLSTD 31.24 21.44 17.84 16.27 15.59
LSLRLE 25.19 15.36 11.75 10.10 9.39

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

5

10

15

20

25

30

35

40

C
yc

le
s p

er
 p

ix
el

 -
g=

1

Rosenfeld

Suzuki

RCM

HCS

HCS2

Grana

LSLSTD

LSLRLE

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

2

4

6

8

10

12

14

16

C
yc

le
s p

er
 p

ix
el

 -
g=

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Image granularity

0

5

10

15

20

25

C
yc

le
s p

er
 p

ix
el

Fig. 6. HaswellM: cpp over density for granularity g ∈ {1, 4} and average
cpp over granularity with FC

for HaswellM (18.8 cpp up to 25.6 cpp for CortexA9). Those
variations are explained by the structure of the image (fig. 4).
If granularity is low there are more labels than if granularity
is high. So sparser memory accesses will happen, leading to
different amounts of cache hits and cache misses.

d) Architecture influence - HaswellM/CortexA9: The
most noticeable differences between HaswellM and CortexA9
are the increase of cpp and the evolution of the algorithms
rank. Table III highlights the cpp ratio between HaswellM and

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

10

20

30

40

50

60

70

C
yc

le
s p

er
 p

ix
el

 -
g=

1
Rosenfeld

Suzuki

RCM

HCS

HCS2

Grana

LSLSTD

LSLRLE

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0
5

10
15
20
25
30
35
40
45

C
yc

le
s p

er
 p

ix
el

 -
g=

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Image granularity

0

10

20

30

40

50

C
yc

le
s p

er
 p

ix
el

Fig. 7. CortexA9: cpp over density for granularity g ∈ {1, 4} and average
cpp versus granularity

CortexA9 for each algorithm. The lowest value means that the
algorithm is comparatively less slowed on CortexA9 than the
others, One can remark that, LSLRLE , HCS, Grana, and
LSLSTD make a better use of the CortexA9 than HCS2,
RCM , Rosenfeld, and Suzuki. There are two explanations:
conditional instructions and memory latency who question the
trade-offs made by algorithms. RCM does less tests for each
pixel, less loads for foreground pixel, but more loads for back-
ground ones. These choices might be valuable on HaswellM
but are less efficient on CortexA9. Grana and HCS2 execute
more tests than others and less memory accesses due to
their block-based construction. The gap between LSLRLE

and LSLSTD is bigger on CortexA9 than HaswellM, because
LSLRLE performs less memory accesses (only for the start
and the end of runs). As HCS is a run-based algorithm it
performs less memory access than pixel based.

TABLE III
cpp RATIO CORTEXA9/HASWELLM FOR RANDOM IMAGES WITH FC

granularity
algorithms g = 1 g = 2 g = 4 g = 8 g = 16

Rosenfeld 2.99 3.99 5.22 5.86 6.14
Suzuki 3.05 4.02 5.23 5.86 6.18
RCM 3.46 3.98 4.68 5.17 5.48
HCS 2.38 2.90 3.55 4.06 4.38
HCS2 3.17 3.76 4.43 4.87 5.07
Grana 2.39 3.13 3.86 4.44 4.80

LSLSTD 3.27 3.76 4.11 4.34 4.56
LSLRLE 1.98 2.46 3.21 3.90 4.67

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

20

40

60

80

100

C
yc

le
s p

er
 p

ix
el

 -
g=

1

Rosenfeld

Suzuki

RCM

HCS

HCS2

Grana

LSLSTD

LSLRLE

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

10

20

30

40

50

60

70

80

C
yc

le
s p

er
 p

ix
el

 -
g=

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Image granularity

0

10

20

30

40

50

60

70

80

C
yc

le
s p

er
 p

ix
el

Fig. 8. CortexA9: cpp vs density for granularity g ∈ {1, 4} and average
cpp over granularity with FC

e) Real case images: The benchmark on natural images
from SIDBA data base confirms the random images conclu-
sion. We give the results for algorithms with FC (table IV)
with min, average and max values for processing time and
cpp, to allow direct comparison with others articles’ results.

TABLE IV
EXECUTION TIME AND cpp FOR SIDBA WITH FC

time(ms) cpp
min avg max min avg max

algorithms Haswell
Rosenfeld 2.34 2.73 3.16 8.28 9.65 11.19
Suzuki 2.27 2.69 3.50 8.03 9.54 12.40
RCM 2.64 2.99 3.29 9.35 10.58 11.66
HCS 2.38 2.78 3.17 8.44 9.85 11.23
HCS2 2.63 3.06 3.61 9.32 10.84 12.78
Grana 2.14 2.59 3.04 7.58 9.19 10.77

LSLSTD 0.87 1.02 1.18 3.08 3.61 4.17
LSLRLE 0.42 0.69 1.00 1.48 2.43 3.55
algorithms A9

Rosenfeld 19.20 23.41 28.84 48.00 58.53 72.10
Suzuki 18.80 22.69 27.32 47.01 56.73 68.30
RCM 23.40 24.30 25.79 58.51 60.75 64.49
HCS 15.10 17.55 20.40 37.74 43.87 50.99
HCS2 17.42 21.39 26.19 43.55 53.47 65.47
Grana 14.92 17.01 19.81 37.31 42.53 49.52

LSLSTD 7.38 8.23 8.81 18.46 20.58 22.03
LSLRLE 5.62 6.00 6.62 14.04 14.99 16.56

Figures 9 and 10 present cpp for all algorithms on all
architectures for the SIDBA data base. On HaswellM, the

ranking without FC is LSLRLE , Grana, Suzuki, LSLSTD,
Rosenfeld, HCS, RCM , and HCS2 and with FC the
ranking is LSLRLE , LSLSTD, Grana, Suzuki, Rosenfeld,
HCS, RCM , and HCS2.

One can remark that - in average - new architectures are
faster than previous ones and Intel’s architectures are faster
than ARM’s one. But not identically for all algorithms: HCS
and Grana take both a great advantage of the CortexA15
architecture. Without FC they are the fastest on CortexA15,
but on a real application case (with FC), LSL (RLE and
STD) are the world’s fastest algorithm.

LSLSTD has a very stable execution time for all images
(table IV): For SIDBA, the execution time variation be-
tween images is 0.31ms on HaswellM (0.21ms without FC),
whereas for Rosenfeld the variation is 0.82ms on HaswellM
(0.48ms without FC) :

CortexA9 CortexA15 PenrynM haswellM
0

5

10

15

20

25

30

35

40

cp
p

Fig. 9. Histogram of average cpp for SIDBA

CortexA9 CortexA15 PenrynM haswellM
0

10

20

30

40

50

60

70

cp
p

Fig. 10. Histogram of average cpp for SIDBA with FC

f) Architecture influence - A15/A9: The relative order
of algorithm is maintained except for LSLRLE that is less
accelerated than the others. This is due to its already optimized
memory management that takes less advantages from A15
optimizations.

g) Energy consumption: Table V presents IE an energy
index that is proportional to the average energy consumption
(IE = t × TDP of the whole dual-core processor). As TDP
reflects the power consumption of the two cores, IE is higher
than the real energy consumption. But as the benchmarked
processor have two cores, IE enforces the order relation
between processors. On HaswellM, PenrynM, and CortexA9,

LSLRLE is the best. On A15 it is LSLSTD. The CortexA15
is, right now, the most energy-efficient architecture.

TABLE V
ENERGY ESTIMATION WITH FC (mJ)

Architectures
algorithms CortexA9 CortexA15 PenrynM HaswellM

Rosenfeld 28.1 13.4 68.9 40.9
Suzuki 27.2 13.3 67.6 40.4
RCM 29.2 14.3 76.2 44.8
HCS 21.1 11.2 68.1 41.7
HCS2 25.7 12.6 76.3 45.9
Grana 20.4 10.7 66.1 38.9

LSLSTD 9.9 4.6 21.4 15.3
LSLRLE 7.2 5.0 16.5 10.3

IV. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a new detailed benchmark
procedure for connected component labeling with granularity
steps that is complemented with the use of a standard database.

The benchmark procedure, confirms that for real applica-
tions (that is with features computations) LSLRLE algorithm
outperforms all state-of-the-art algorithms, on both Intel and
ARM processors. For time-predictability and standard devia-
tion, LSLSTD is the best choice.

Future works will consider parallelization of CCL on GPP.

REFERENCES

[1] F. Chang and C. Chen. A linear-time component-labeling algorithm
using contour tracing technique. Computer Vision and Image Under-
standing, 93:206–220, 2004.

[2] T. Cormen, C. Leiseirson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2001.

[3] C. Grana, D.Borghesani, and R. Cucchiara. Fast block based connected
components labeling. In ICIP, pages 4061–4064. IEEE, 2009.

[4] R. Haralick and L. Shapiro. Computer and Robot Vision. Addison-
Wesley ISBN 0-201-56943-4, 1992.

[5] L. He, Y. Chao, and K. Suzuki. A run-based two-scan labeling algorithm.
In ICIAR, pages 131–142. LNCS, 2007.

[6] L. He, Y. Chao, and K. Suzuki. An efficient first-scan method for label-
equivalence-based labeling algorithms. Pattern Recognition Letters,
31(1):28–35, 2010.

[7] L. He, Y. Chao, and K. Suzuki. A new two-scan algorithm for labeling
connected components in binary images. In W. Congress, editor,
Proceedings of the World Congress on Engineering, volume 2, pages
p1141–1146, 2012.

[8] U. Hernandez-Belmonte, V. Ayala-Ramirez, and R. Sanchez-Yanez.
Enhancing ccl algorithms by using a reduced connectivity mask. In
Springer, editor, Mexican Conference on Pattern Recognition, pages
195–203, 2013.

[9] L. Lacassagne and B. Zavidovique. Light speed labeling: efficient
connected component labeling on risc architectures. Journal of Real-
Time Image Processing, 6(2):117–135, 2011.

[10] R. Lumia, L. Shapiro, and O. Zungia. A new connected components
algorithms for virtual memory computers. Computer Vision, Graphics
and Image Processing, 22-2:287–300, 1983.

[11] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator.
Transactions on Modeling and Computer simulation, 8(1):3–30, 1998.

[12] N. Otsu. A threshold selection method from gray-level histograms.
Transactions on System, Man and Cybernetics, 9:62–66, 1979.

[13] C. Ronse and P. Dejvijver. Connected components in binary images:
the detection problems. In Research Studies Press, 1984.

[14] A. Rosenfeld and J. Platz. Sequential operator in digital pictures
processing. Journal of ACM, 13,4:471–494, 1966.

[15] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J.
ACM, pages 215–225, 1975.

[16] K. Wu, E. Otoo, and A. Shoshani. Optimizing connected component
labeling algorithms. Pattern Analysis and Applications, 2008.

