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Abstract. The Majority Rule Sorting (MR-Sort) method assigns
alternatives evaluated on multiple criteria to one of the predefined
ordered categories. The Inverse MR-Sort problem (Inv-MR-Sort) con-
sists in computing MR-Sort parameters that match a dataset. Although
Inv-MR-Sort is known to be computationally difficult, exact resolution
approaches have been proposed in the literature, but are confronted
to a computational barrier. In contrast, Sobrie et al. [12] tackled it
with a heuristic. In this work, we aim at improving the computational
efficiency of this heuristic approach by parallelization strategies using
GPU.

1 Introduction

In this paper, we consider multiple criteria sorting problems in
which alternatives evaluated on several criteria are to be assigned to
one of the pre-defined ordered categories C*, C?, ..., C?, C* (C?,
respectively) being the worst (best, respectively) category.

Many multiple criteria methods have been proposed in the litera-
ture (see e.g. [5],[15]). We are interested in a pairwise comparison
based method: the Non-Compensatory Sorting model (NCS, see
[2, 3]). NCS assigns alternatives to categories based on the way
alternatives compare to boundary profiles representing frontiers
between consecutive categories and can be viewed as an axiomatic
formulation of the Electre Tri method (see [11]). More specifically,
we consider a particular case of NCS in which the importance of
criteria is additively represented using weights: the Majority Rule
Sorting (MR-Sort, see [7]).

In real-world decision problems involving multiple criteria
sorting, the implementation of a sorting model requires eliciting the
decision-maker’s (DM) preferences and adequately representing her
preferences by setting appropriate values for the preference-related
parameters. It is usual to elicit the sorting model parameters indirectly
from a set of assignment examples, i.e., a set of alternatives with
corresponding desired categories. Such preference learning approach
has been developed for MR-Sort (Inv-MR-Sort, see, e.g. [7], [13]),
and makes it possible to compute MR-Sort parameters that best fit a
learning set provided by the DM.

2 NCS, MR-Sort model and Inv-MRSort

2.1 NCS and MR-Sort

Non-compensatory Sorting (NCS) [2, 3] is an MCDA sorting model
originating from the ELECTRE TRI method [6]. NCS can be
intuitively formulated as follows: an alternative is assigned to a
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category if (i) it is better than the lower limit of the category on a
sufficiently strong subset of criteria, and (ii) this is not the case when
comparing the alternative to the upper limit of the category.

Consider the simplest case involving 2 categories Good (G) and
Bad (B) with the following notations. We denote X; the finite set
of possible values on criterion 7,5 € N' = {1,...,n}; we suppose
w.l.o.g. that X; = [min;, max;] C R. Hence, X = Hie/\f X, repre-
sents the set of alternatives to be sorted. We denote A; C X the set
of approved values on criterion i € N'. Approved values on criterion
i (z; € A;) correspond to values contributing to the assignment of an
alternative to category G. In order to assign alternative a to category
G, a should have approved values on a subset of criteria which is “suf-
ficiently strong”. The set 7 C 2V contains the “sufficiently strong”
subsets of criteria; it is a subset of 2V up-closed by inclusion. In this
perspective, the NCS assignment rule can be expressed as follows:

zeg MfieN iz, e A} eF, VzeX (1)
With more than two categories, we consider an ordered set of p cat-
egories CP 1> --- > C" > - .- > C*, where 1> denotes the order on
categories. Sets of approved values A" C X; on criterion i (i € N)
are defined with respect to a category h (h = 2..p), and should be
defined as embedded sets such that A7 D ... D AP. Analogously,
sets of sufficiently strong criteria coalitions are relative to a category
h, and are embedded as follows: F2 D ... D FP. The assignment
rule is defined bellow, for all z € X, where A} = X;, Af“ =0,
F''=P(N),and FPH = 0.
ho {ieN:z; e At} € Fhand
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A particular case of NCS corresponds to the MR-Sort rule [7].
When the families of sufficient coalitions are all equal F2 = ... =
FP = F and defined using additive weights attached to criteria, and a
threshold: 7 = {F C N : Y ;. pw; > A}, withw; >0, >0, w; =
1, and A € [0, 1]. Moreover, as the finite set of possible values on
criterion 4, X; = [min;, maz;] C R, the order on R induces a
complete pre-order »=; on X;. Hence, the sets of approved values
on criterion 1, A? C X; (1 € N,h = 2...p) are defined by :=; and
bl € X, the minimal approved value in X; at level h: A? = {z; €
Xz = bI'}. In this way, b" = (b, ..., b") is interpreted as the
frontier between categories C"~' and C"; b* = (miny, ..., min,,)
and b**! = (max1, ..., max,) are the lower frontier of C'* and the
upper frontier of C*. Therefore, the MR-Sort rule can be expressed
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2.2 Inv-MR-Sort

MR-Sort preference parameters, e.g. weights, majority level, and
limit profiles, can be either initialized by the “end-user”, i.e. the



decision-maker, or learned through a set of assignment examples
called a learning set. We are focusing on the learning approach. The
aim is to find the MR-Sort parameters that “best” fit the learning set.

We consider as input a learning set, denoted L, composed of
assignment examples. Here, an assignment example refers to an
alternative a € A* C X, and a desired category c(a) € {1,...,p}.
In our context, the determination of MR-sort parameters values relies
on the resolution of a mathematical program based on assignment
examples: the Inv-MR-Sort problem takes as input a learning set L
and computes weights (w;,i € N), majority level (}), and limit
profiles (bn, h = 2..p) that best restore L, i.e. that maximizes the
number of correct assignments.

This learning approach — also referred to as preference disaggrega-
tion — has been previously considered in the literature. In particular,
[10],[14] learned the ELECTRE TRI parameters using mathematical
programming formulation (non-linear programming for the former,
mixed-integer programming for the latter). In contrast, [4] propose an
evolutionary approach to do so.

Later, a more amenable model, the MR-Sort — which derives from
the ELECTRE TRI method and requires fewer parameters than ELEC-
TRE TRI — was introduced by Leroy et al. in [7]. They proposed a
MIP implementation for solving the /nv-MR-Sort problem. Belahcene
et al. [1] tackled it with a Boolean satisfiability (SAT) formulation.
In contrast with these exact formulations, Sobrie et al. [12] tackled
it with a heuristic; indeed, as inv-NCS, Inv-MR-Sort is known to be
computationally difficult.

3 Improving Sobrie’s heuristic on GPUs

In this paper, we aim at improving the efficiency of Sobrie’s heuristic
[12] through the use of new parallel architectures. The current
state of the art make it possible to handle (with a computation time
compatible with an interaction with the DM) datasets involving
up to 10 criteria, 5 categories, and several hundreds of assignment
examples. We aim a being able to consider up to several dozen of
criteria, and several thousands of examples (with 5 categories), which
would open the path to new types of application.

Hence, in our approach, the main objective is to benefit from the
performance of computer with parallel architecture in order to improve
the computational performance of the Inv-MR-Sort resolution. To
migrate the In-MR-Sort heuristic proposed by Sobrie et al [13] that
was originally implemented in Python, we started by re-implementing
the heuristic in C. Then we used the CUDA general purpose parallel
computing platform to propose an optimized version.

4 Experimental results

We performed tests which aims at evaluating the comparative
performance of Inv-MR-Sort implemented in Python on CPU, C on
CPU, and C on GPU. Tests were performed on a machine (here is the
description...).

In the numerical investigations, we vary the number of criteria
(n € [6,20]), the number of categories (p = 2,3,4,5), and set
the size of the learning set to 10000. We repeat each instance size
10000 times. To generate a ground truth, we randomly generate
an MR-Sort model M°, and randomly generate n-tuples of values
considered as alternatives. Then we simulate the assignments of
these alternatives using M". The obtained learning set L, used as
input to the three implementations of Inv-MR-Sort (Python-CPU,

C-CPU, and C-GPU), generating a learned model noted M.
For each instance, we observe the computing time, and compute
the generalisation on a randomly generated test set of 10° alternatives.

The result show the benefit of solving Inv-MR-Sort problem in-
stances on a parallel architecture and makes it possible to consider
the resolution of larger instances size in a timing compatible with an
interaction with a decision-maker.

5 Conclusion and further research

In this paper, we developed an GPU implementation of the heuristic
for Inv-MR-Sort proposed by Sobrie et al. [12]. Our work show that
the use the capabilities of the new parallel architecture enables to
consider datasets of larger size, which opens new application area.

To further extend the type of applications, research should be con-
tinued in order to consider single peaked preference on criteria (see
[8, 9]). Another research avenue that arize when the number of criteria
increases, is related to the computation of a “parcimonious” MR-Sort
representation of the learning set, involving only a limited subset of
criteria.
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